首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7154篇
  免费   511篇
  国内免费   1126篇
  2023年   108篇
  2022年   135篇
  2021年   157篇
  2020年   181篇
  2019年   185篇
  2018年   216篇
  2017年   195篇
  2016年   212篇
  2015年   187篇
  2014年   367篇
  2013年   492篇
  2012年   295篇
  2011年   374篇
  2010年   289篇
  2009年   329篇
  2008年   364篇
  2007年   398篇
  2006年   338篇
  2005年   306篇
  2004年   290篇
  2003年   268篇
  2002年   254篇
  2001年   246篇
  2000年   224篇
  1999年   229篇
  1998年   144篇
  1997年   148篇
  1996年   146篇
  1995年   136篇
  1994年   134篇
  1993年   163篇
  1992年   117篇
  1991年   129篇
  1990年   92篇
  1989年   94篇
  1988年   92篇
  1987年   60篇
  1986年   53篇
  1985年   79篇
  1984年   85篇
  1983年   53篇
  1982年   53篇
  1981年   52篇
  1980年   61篇
  1979年   55篇
  1978年   37篇
  1977年   37篇
  1976年   28篇
  1974年   33篇
  1973年   27篇
排序方式: 共有8791条查询结果,搜索用时 28 毫秒
1.
2.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
3.
Hypersensitive response of wheat to the Hessian fly   总被引:3,自引:0,他引:3  
Hessian flyMayetiola destructor (Say) larvae are able to obtain food from their host plant without inflicting mechanical damage to the plant surface, apparently by secreting substances which elicit release of nutrients from plant cells surrounding the feeding site. Cells of fully susceptible plants retain their normal appearances, while in resistant plants extensive areas of cellular collapse occur. These responses indicate that hypersensitivity is the basis of wheat's resistance to the Hessian fly. The fly's feeding mechanism more closely resembles that of a pathogen than of a phytophagous insect; correspondingly, both the genetic relationship and resistance mechanism of the host plant to the parasite are of the sorts commonly associated with bacterial and fungal pathogens.  相似文献   
4.
Water-insoluble compounds can be substrates for enzymatic reactions when lipases are immobilized properly and suitable organic solvents are used. In this review, three type of lipase immobilization method and their application to the asymmetric syntheses of complex molecules are described. Lipases immobilized with Celite or synthetic prepolymers such as urethane prepolymer and photo-crosslinkable resin prepolymer have been applied for the kinetic resolution of many kinds of water-insoluble substrate.

Phospholipid-lipase aggregates with ether linkages are novel and have been found to function effectively as immobilized lipases in asymmetric hydrolysis or esterification reactions in water-saturated organic solvent. The phospholipid-lipase aggregates are considered to have a stacked bilayer based on X-ray diffraction analysis structure of the lipid in the crystalline phase.  相似文献   
5.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   
6.
Transport of zinc and manganese to developing wheat grains   总被引:11,自引:0,他引:11  
An understanding of the transport pathway used by Zn and Mn to enter developing grains may allow measures to increase the Zn and Mn content of wheat grain grown on Zn/Mn deficient soils. For this reason, transport of Zn and Mn into developing grains of wheat ( Triticum aestivum L. cv. Aroona) was investigated. Detached ears (18–22 days post-anthesis) were cultured for 48 h in a solution containing 185 kBq of 65Zn and 185 kBq of 54Mn. Transport of 65Zn to the grain was unaffected by removal of glumes but was slightly reduced after the lemma was removed. Heat girdling the peduncle slightly reduced the amount of 65Zn transported to the grain, whilst heat girdling the rachilla reduced transport of 65Zn to the grain to a greater degree, suggesting phloem transport to the rachilla. The transport inhibitor CCCP (carbonyl cyanide m -chlorophenyl hydrazone) blocked 65Zn transport to grain but not to lemma and glumes. Removing glumes and lemma and heat girdling the peduncle did not affect transport of 54Mn, but transport was slightly affected by heat girdling the rachilla, indicating xylem transport. CCCP blocked transport of 54Mn into the grain but not to lemma and glumes. It was concluded that xylem-to-phloem transfer of Zn occurs in the rachis and to a lesser extent in peduncle and lemma. The results suggest that the lemma may be an important site for phloem loading when the concentration of Zn within the xylem is high. The data also suggest that Mn was predominantly translocated to the spikelets in the xylem, but that transport to the grain was dependent upon membrane transport before entering the grain. Phloem loading of Mn into the grain vascular system may have occurred at the site of xylem discontinuity in the floral axis.  相似文献   
7.
A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m?2), number of fertile tillers (m?2), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.  相似文献   
8.
9.
Y. Avi-Dor  R. Rott  R. Schnaiderman 《BBA》1979,545(1):15-23
The interrelation was studied between the phototransient absorbing maximally at 412 nm (M412) and light-induced proton release under steady-state conditions in aqueous suspensions of ‘purple membrane’ derived from Halobacterium halobium. The decay of M412 was slowed down by the simultaneous application of the ionophoric antibiotics valinomycin and beauvericin. The former had only slight activity alone and the latter was effective only in conjunction with valinomycin. The steady-state concentration of M412 which was formed on illumination was a direct function of the concentration of valinomycin. Maximum stabilization of M412 was obtained when the valinomycin was approximately equimolar with the bacteriorhodopsin. Addition of salts to the medium increased the number of protons released per molecule of M412 without affecting the level of M412 which was produced by continuous illumination. The effectiveness of the salts in this respect depended on the nature of the cation. Ca2+ and their antagonists La3+ and ruthenium red were found to have especially high affinity for the system. The extent of light-induced acidification could not be enhanced by increasing the pH of the medium from 6.5 to 7.8. The possible mechanism of action of the ionophores and of the cations on the photocycle and on the proton cycle is discussed.  相似文献   
10.
Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20‐ to 25‐fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide‐activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl‐Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号